

Statistical Inference

Dr. Duraid Hussein Badr

Dr. of statistics

Al basrah University

Lesson Objectives

- ☐ Know what is Inference
- ☐ Know what is parameter estimation
- Understand hypothesis testing & the "types of errors" in decision making.
- \square Know what the α -level means.
- Learn how to use test statistics to examine hypothesis about population mean, proportion

Inference

Use a random sample to learn something about a larger population

Inference

- ◆ Two ways to make inference
 - Estimation of parameters
 - * Point Estimation (\overline{X} or p)
 - * Intervals Estimation
 - Hypothesis Testing

Mean:

X

estimates

_~__

Standard deviation:

S

estimates

Proportion:

p

estimates

_f___

from sample

from entire population

Estimation of parameters

Parameter

= Statistic ± Its Error

Sampling Distribution

Standard Error

Quantitative Variable

SE (Mean) =
$$\sqrt{n}$$

Qualitative Variable

$$SE(p) = \sqrt{\frac{p(1-p)}{n}}$$

Confidence Interval

Confidence Interval

Interpretation of CI

Probabilistic

Practical

In repeated sampling 100(1r)% of <u>all intervals</u> around sample means will in the long run include ~

We are 100(1-r)% confident that the <u>single</u> computed CI contains ~

Example (Sample size 30)

An epidemiologist studied the blood glucose level of a random sample of 100 patients. The mean was 170, with a SD of 10.

$$SE = 10/10 = 1$$

$$\sim = qX + Z\hat{I} SE$$

Then CI:

$$\mu = 170 \pm 1.96 \times 1$$
 168.04 ½ ~ 171.96

Example (Proportion)

In a survey of 140 asthmatics, 35% had allergy to house dust. Construct the 95% CI for the population proportion.

$$f = p \pm Z \sqrt{\frac{P(1-p)}{n}}$$
 SE = $\sqrt{\frac{0.35(1-0.35)}{140}}$ = 0.04

$$0.35 - 1.96 \hat{1} \ 0.04 \frac{1}{2} f \ 0.35 + 1.96 \hat{1} \ 0.04$$
 $0.27 \frac{1}{2} f \ 0.43$
 $27\% \frac{1}{2} f \ 43\%$

Hypothesis testing

A statistical method that uses sample data to evaluate a hypothesis about a population parameter. It is intended to help researchers differentiate between real and random patterns in the data.

What is a Hypothesis?

An assumption about the population parameter.

I assume the mean SBP of participants is 120 mmHg

Null & Alternative Hypotheses

♦ H_0 Null Hypothesis states the Assumption to be tested e.g. SBP of participants = 120 (H_0 : μ = 120).

Level of Significance, \alpha

- Defines unlikely values of sample statistic if null hypothesis is true. Called rejection region of sampling distribution
- ♦ Typical values are 0.01, 0.05
- **♦** Selected by the Researcher at the Start
- Provides the Critical Value(s) of the Test

Level of Significance, α and the Rejection Region

Result Possibilities

*H*₀: Innocent

Jury Trial			Hypothesis Test			
	Actual Situation			Actual Situation		
Verdict	Innocent	Guilty	Decision	H₀ True	H₀ False	
Innocent	Correct	Error	Accept H ₀	1 - α	Type II Error (β)	
Guilty	Error	Correct	Reject H ₀	Type I Error (α)	Power (1 - β)	
False Positive Negative 155%						

Factors Increasing Type II Error

- ◆ True Value of Population Parameter
 - * Increases When Difference Between Hypothesized Parameter & True Value Decreases
- Significance Level α
 - * Increases When α Decreases
- Population Standard Deviation σ
 - Increases When σ Increases
- ♦ Sample Size *n*
 - * Increases When *n* Decreases

p Value Test

◆ Probability of Obtaining a Test Statistic More Extreme % or ∫) than Actual Sample Value Given H₀ Is True

- **◆ Called Observed Level of Significance**
- Used to Make Rejection Decision
 - * If p value $\int \alpha$, Do Not Reject H_0
 - * If p value $< \alpha$, Reject H_0

Hypothesis Testing: Steps

Test the Assumption that the true mean SBP of participants is 120 mmHg.

State H_0 : $\mu = 120$

State H_1 $H_1: \mu \circlearrowleft 120$

Choose α $\alpha = 0.05$

Choose n n = 100

Choose Test: $Z, t, X^2 Test (or p Value)$

Hypothesis Testing: Steps

Compute Test Statistic (or compute P value)

Search for Critical Value

Make Statistical Decision rule

Express Decision

One sample-mean Test

- Assumptions
 - * Population is normally distributed

t test statistic

$$t = \frac{\text{sample mean - null value}}{\text{standard error}} = \frac{\overline{x} - \sim_0}{\sqrt[S]{n}}$$

Example Normal Body Temperature

What is **normal body temperature**? Is it actually 37.6°C (on average)?

State the null and alternative hypotheses

$$H_0$$
: $\mu = 37.6$ °C

Example Normal Body Temp (cont)

Data: random sample of n = 18 normal body temps

37.2	36.8	38.0	37.6	37.2	36.8	37.4	38.7	37.2
36.4	36.6	37.4	37.0	38.2	37.6	36.1	36.2	37.5

Summarize data with a test statistic

Variable	n	Mean	SD	SE	t	P
Temperature	18	37.22	0.68	0.161	2.38	0.029

$$t = \frac{\text{samplemean-null value}}{\text{standarderror}} = \frac{\bar{x} - \gamma_0}{\sqrt[S]{n}}$$

STUDENT'S t DISTRIBUTION TABLE

Degrees of	Probability (p value)				
freedom	0.10	0.05	0.01		
1	6.314	12.706	63.657		
5	2.015	2.571	4.032		
10	1.813	2.228	3.169		
17	1 740	2.110	2.898		
20	1.725	2.086	2.845		
24	1.711	2.064	2.797		
25	1.708	2.060	2.787		
خ	1.645	1.960	2.576		

Example Normal Body Temp (cont)

Find the *p*-value

$$Df = n - 1 = 18 - 1 = 17$$

From SPSS: p-value = 0.029

From t Table: p-value is between 0.05 and 0.01.

Area to left of t = -2.11 equals area to right of t = +2.11.

The value t = 2.38 is between column headings 2.110& 2.898 in table, and for df =17, the p-values are 0.05 and 0.01.

Example Normal Body Temp (cont)

Decide whether or not the result is statistically significant based on the *p*-value

Using $\alpha = 0.05$ as the level of significance criterion, the results are **statistically significant** because 0.029 is less than 0.05. In other words, we can reject the null hypothesis.

Report the Conclusion

We can conclude, based on these data, that the mean temperature in the human population does not equal 37.6.

One-sample test for proportion

- **◆ Involves categorical variables**
- **◆ Fraction or % of population in a category**
- **◆ Sample proportion** (*p*)
- ◆ Test is called Z test where:
- ◆ Z is computed value
- is proportion in population (null hypothesis value)

$$p = \frac{X}{n} = \frac{number\ of\ successes}{sample\ size}$$

$$Z = \frac{p - f}{\sqrt{\frac{f(1 - f)}{n}}}$$

Critical Values: 1.96 at =0.05

2.58 at = 0.01

Example

- In a survey of diabetics in a large city, it was found that 100 out of 400 have diabetic foot. Can we conclude that 20 percent of diabetics in the sampled population have diabetic foot.
- Test at the $\alpha = 0.05$ significance level.

Solution

 H_0 : = 0.20

 H_1 : 0.20

= 2.50

Critical Value: 1.96

Decision:

We have sufficient evidence to reject the Ho value of 20%

We conclude that in the population of diabetic the proportion who have diabetic foot, does not equal 0.20

