

Dr. Duraid Hussein Badr
Dr. of statistics
Al basrah University

Lesson Objectives

\square Know what is Inference
K Know what is parameter estimation

- Understand hypothesis testing \& the "types of errors" in decision making.
\square Know what the α-level means.
\square Learn how to use test statistics to examine hypothesis about population mean, proportion

Inference

Use a random sample to learn something about a larger population

Inference

- Two ways to make inference
*Estimation of parameters
* Point Estimation (\bar{X} or p)
* Intervals Estimation
*Hypothesis Testing

Mean:

$\overline{\mathrm{X}}$
estimates _ μ

Standard deviation:

S estimates \qquad
Proportion: \mathbf{P} estimates $\quad \pi$
from entire population

Esimationo of parameders

Population
 Point estimate Interval estimate

 $11!:=$
$5: 0: \%$

Sampling Distribution

\bar{X} or P
\bar{X} or P

The Sampling Distribution...

Standard Error

Quantitative Variable

Qualitative Variable

Confidence Interval

Confidence Interval

Interpretation of CI

Probabilistic

In repeated sampling 100(1α)\% of all intervals around sample means will in the long run include μ

Example (Sample size \geq 30)

An epidemiologist studied the blood glucose level of a random sample of 100 patients. The mean was 170 , with a SD of 10 .
$\mathrm{SE}=10 / 10=1$

$$
\mu=\overline{\mathbf{X}} \pm \mathbf{Z} \times \mathbf{S E}
$$

Then CI:

$\mu=170 \pm 1.96 \times 1 \quad 168.04 \leq \mu \geq 171.96$

Example (Proportion)

In a survey of 140 asthmatics, $\mathbf{3 5 \%}$ had allergy to house dust. Construct the 95% CI for the population proportion.

$$
\begin{gathered}
\pi=p \pm Z / \sqrt{\frac{P(1-p)}{n}} \mathrm{SE}=\sqrt{\frac{0.35(1-0.35)}{140}}=0.04 \\
0.35-1.96 \times 0.04 \leq \pi \geq 0.35+\mathbf{1 . 9 6} \times 0.04 \\
0.27 \leq \pi \geq 0.43 \\
27 \% \leq \pi \geq 43 \%
\end{gathered}
$$

Hypothesis testing

A statistical method that uses sample data to evaluate a hypothesis about a population parameter. It is intended to help researchers differentiate between real and random patterns in the data.

What is a Hypothesis?

I assume the mean SBP of
An assumption participants is $\mathbf{1 2 0} \mathbf{~ m m H g}$ about the population parameter.

Null \& Alternative Hypotheses

$\checkmark H_{0}$ Null Hypothesis states the Assumption to be tested e.g. SBP of participants = $\mathbf{1 2 0}$ ($\mathrm{H}_{0}: \mu=120$).

$\checkmark H_{1}$ Alternative Hypothesis is the opposite of the null hypothesis (SBP of participants $\neq 120$ ($\left.H_{1}: \mu \neq 120\right)$. It may or may not be accepted and it is the hypothesis that is believed to be true by the researcher

Level of Significance, α

- Defines unlikely values of sample statistic if null hypothesis is true. Called rejection region of sampling distribution
- Typical values are 0.01, 0.05
- Selected by the Researcher at the Start
- Provides the Critical Value(s) of the Test

Level of Significance, a and the Rejection Region

Result Possibilities

H_{0} : Innocent

J ury Trial			Hypothesis Test		
	Actual S	Situation		Actual	Situation
Verdict	Innocent	Guilty	Decision	Ho True	H_{0} False
Innocent	Correct	Error	Accept H_{0}	1- α	Type II Error (β)
Guilty	Error	Correct	Reject H_{0}	Type I Error	$\left.\begin{array}{c} \text { Power } \\ (1-\beta) \end{array}\right\rangle$

Factors Increasing Type II Error

- True Value of Population Parameter
* Increases When Difference Between Hypothesized Parameter \& True Value Decreases
- Significance Level α
* Increases When α Decreases
- Population Standard Deviation σ
* Increases When σ Increases
- Sample Size n
* Increases When \boldsymbol{n} Decreases

p Value Test

- Probability of Obtaining a Test Statistic More Extreme (\leq or \geq) than Actual Sample Value Given H_{0} Is True
- Called Observed Level of Significance
- Used to Make Rejection Decision
$*$ If p value $\geq \alpha$, Do Not Reject H_{0}
$*$ If \boldsymbol{p} value $<\alpha$, Reject \mathbf{H}_{0}

Hypothesis Testing: Steps

Test the Assumption that the true mean SBP of participants is $\mathbf{1 2 0} \mathbf{~ m m H g}$.

State $\boldsymbol{H}_{\mathbf{0}}$

$$
H_{0}: \mu=120
$$

State \boldsymbol{H}_{1}

$$
H_{1}: \mu \neq 126
$$

Choose α

$$
\alpha=0.05
$$

Choose n
$\mathrm{n}=100$
Choose Test:

Z, t, X^{2} Test (orp Value)

Hypothesis Testing: Steps

Compute Test Statistic (or compute P value)
Search for Critical Value
Make Statistical Decision rule
Express Decision

One sample-mean Test

- Assumptions
*Population is normally distributed

- t test statistic

$$
t=\frac{\text { sample mean }- \text { null value }}{\text { standard error }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

Example Normal Body Temperature

What is normal body temperature? Is it actually $37.6^{\circ} \mathrm{C}$ (on average)?

State the null and alternative hypotheses

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu=37.6^{\circ} \mathrm{C} \\
& \mathrm{H}_{\mathrm{a}}: \mu \neq 37.6^{\circ} \mathrm{C}
\end{aligned}
$$

Example Normal Body Temp (cont)

Data: random sample of $n=18$ normal body temps

37.2	36.8	38.0	37.6	37.2	36.8	37.4	38.7	37.2
36.4	36.6	37.4	37.0	38.2	37.6	36.1	36.2	37.5

Summarize data with a test statistic

Variable	n	Mean	SD	SE	t	P
Temperature	18	37.22	0.68	0.161	$\mathbf{2 . 3 8}$	$\mathbf{0 . 0 2 9}$

$$
t=\frac{\text { samplemean }- \text { nullvalue }}{\text { standarderror }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

STUDENT'St DISTRIBUTION TABLE

Degrees of freedom	Probability (p value)		
	$\mathbf{0 . 1 0}$	0.05	0.01
1	$\mathbf{6 . 3 1 4}$	12.706	$\mathbf{6 3 . 6 5 7}$
5	2.015	2.571	4.032
10	1.813	2.228	3.169
17	1740	2.110	2.898
20	1.725	2.086	2.845
24	1.711	2.064	2.797
25	1.708	2.060	2.787
∞	1.645	1.960	2.576

Example Normal Body Temp (cont)

Find the p-value
Df $=\mathrm{n}-1=18-1=17$
From SPSS: p-value $=0.029$
From t Table: p-value is between 0.05 and 0.01 .

Area to left of $t=-2.11$ equals area to right of $t=+2.11$.

The value $t=2.38$ is between column headings $2.110 \& 2.898$ in table, and for $\mathrm{df}=17$, the p-values are 0.05 and 0.01 .

Example Normal Body Temp (cont)

Decide whether or not the result is statistically significant based on the p-value
Using $\alpha=0.05$ as the level of significance criterion, the results are statistically significant because 0.029 is less than 0.05 . In other words, we can reject the null hypothesis.

Report the Conclusion

We can conclude, based on these data, that the mean temperature in the human population does not equal 37.6.

One-sample test for proportion

- Involves categorical variables
- Fraction or \% of population in a category
- Sample proportion (p)
- Test is called Z test

$$
p=\frac{X}{n}=\frac{\text { number of successes }}{\text { sample size }}
$$ where:

-Z is computed value

- Tis proportion in population (null hypothesis value)

$$
Z=\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}
$$

Critical Values: 1.96 at $\boldsymbol{\alpha}=\mathbf{0 . 0 5}$
2.58 at $\alpha=0.01$

Example

- In a survey of diabetics in a large city, it was found that 100 out of 400 have diabetic foot. Can we conclude that 20 percent of diabetics in the sampled population have diabetic foot.
- Test at the $\alpha=0.05$ significance level.

Solution

Critical Value: 1.96 Decision:

We have sufficient evidence to reject the Ho value of $\mathbf{2 0 \%}$ We conclude that in the population of diabetic the proportion who have diabetic foot does not equal $\mathbf{0 . 2 0}$

